\qquad

B.TECH. DEGREE EXAMINATION, NOVEMBER 2014

Third Semester
Branch : Common to all branches except CS and IT
EN 010301 A-ENGINEERING MATHEMATICS-II
(CE, ME, EE, AU, AN, EC, AI, EI, IC, PE, PO, MT, CH AND ST)
(New Scheme-2010 Admission onwards)
[Regular/Improvement/Supplementary/ST—Regular]
Time : Three Hours
Maximum : 100 Marks

Part A

Answer all question briefly.
Each question carries 3 marks.

1. Find grad ϕ if $\phi=\log \left(x^{2}+y^{2}+z^{2}\right)$.
2. If $\vec{f}(t)=t \hat{i}+\left(t^{2}-2 t\right) \hat{j}+\left(3 t^{2}+4 t^{3}\right) \hat{k}$, find $\int_{0}^{1} \vec{f}(t) d t$.
3. Evaluate $\Delta^{2} \mathrm{E}^{3} x^{2}$.
4. Solve $\left(\mathrm{E}^{2}+6 \mathrm{E}+9\right) y_{n}=0$.
5. Find the z-transform of $3^{n} \sin \frac{n \pi}{2}$.

Part B

Answer all questions. Each carries 5 marks.
6. The position vector of a particle at time t is $\vec{r}=\cos (t-1) \hat{i}+\sinh (t-1) \hat{j}+\alpha r^{3} \hat{k}$. Find the condition imposed on α by requiring that at time $t=1$, the acceleration is normal to the position vector.
7. Find the work done when a force $\overrightarrow{\mathrm{F}}=\left(x^{2}-y^{2}+x\right) \hat{i}-(2 x y+y) \hat{j}$ moves a particle in the $x y$ plane from $(0,0)$ to $(1,1)$ along the parabola $y^{2}=x$.
8. Prove that $\delta=\Delta(1+\Delta)^{-1 / 2}=\nabla(1-\nabla)^{-1 / 2}$.
9. Solve the difference equation $y_{n+2}+3 y_{n+1}+2 y_{n}=\sin \frac{n \pi}{2}$.
10. Find the inverse z-transform of $\frac{4-8 z^{-1}+6 z^{-2}}{\left(1+z^{-1}\right)\left(1-2 z^{-1}\right)}$.

Part C

Answer all questions.
Each full question carries 12 marks.
11. (a) The temperature at a point (x, y, z) in space is given $\mathrm{T}(x, y, z)=x^{2}+y^{2}-z$. A mosquito located at $(1,1,2)$ desires to fly in such a direction that it will get warm as soon as possible. In what direction should it fly ?
(b) Find the constants a, b, c, so that $\overrightarrow{\mathrm{F}}=(x+2 y+a z) \hat{i}+(b x-3 y-z) \hat{j}+(4 x+c y+2 z) \hat{k}$ is irrotational.
Or
12. (a) A particle moves along the curve $\bar{r}\left(r^{3}-4 t\right) \hat{i}+\left(t^{2}+4 t\right) \hat{j}+\left(8 t^{2}-3 t^{3}\right) \hat{k}$ where t is the time. Find the magnitudes of acceleration along the tangent and normal at time $t=2$.
(b) Find the directional derivative of $\nabla .(\nabla \phi)$ at the point $(1,-2,1)$ in the direction of the normal to the surface $x y^{2} z=3 x+z^{2}$, where $\phi=2 x^{3} y^{2} z^{4}$.
13. (a) Evaluate the line integrals $\int_{\mathrm{C}}\left\{\left(x^{2}+x y\right) d x+\left(x^{2}+y^{2}\right) d y\right\}$ where C is the square formed by the lines $y= \pm 1$ and $x= \pm 1$.
(b) Find the circulation of $\overrightarrow{\mathrm{F}}$ round the curve C , where $\overrightarrow{\mathrm{F}}=e^{x} \sin (y) \hat{i}+e^{x} \cos (y) \hat{j} \mathrm{C}$ is the rectangle whose vertices are $(0,0),(1,0),\left(1, \frac{\pi}{2}\right)$ and $(0, \pi / 2)$.

Or
14. Apply stoke's theorem to evaluate $\int_{\mathrm{C}}[(x+y) d x+(2 x-z) d y+(y+z) d z]$ where C is the boundary of the triangle with vertices $(2,0,0),(0,3,0)$ and $(0,0,6)$.
15. Find the interpolation the missing values in the following data :

x	$:$	0	5	10	15	20	25	
y	$:$	6	10	-	17	-	31	
		Or						

16. Use Newton's divided difference formula to find $f(7)$, if $f(3)=24, f(5)=120, f(8)=502$, $f(9)=720, f(12)=1616$.

> Or
17. Apply Simpson's rule to find the are a abounded by the x-axis, the lines $x=1, x=4$ and the curve through the points.
$x \quad:$
1.0
1.5
2.0
$2.5 \quad 3.0$
3.5
4.0
$y \quad:$
2.0
2.4
2.7
2.8
3.0
2.6
2.1
Or
18. Find the complete solution for the following :
(a) $y_{n+2}-4 y_{n+1}+4 y_{n}=3 n+2^{n}$.
(b) $u_{x+2}-2 m u_{x+1}+\left(m^{2}+n^{2}\right) u_{x}=m^{x}$.
19. (a) Using $z(n)=\frac{z}{(z-1)^{2}}$, show that $z(n \cos n \theta)=\frac{\left(z^{3}+z\right) \cos \theta-2 z^{2}}{\left(z^{2}-2 z \cos \theta+1\right)^{2}}$.
(b) Using convolution theorem, find the inverse z-transform of $\frac{8 z^{2}}{(2 z-1)(4 z-1)}$.

Or
20. (a) Solve the following using z-transforms :

$$
y(n)-y(n-1)=u(n)+u(n-1)
$$

(b) Given $z\left(u_{n}\right)=\frac{2 z^{2}+3 z+4}{(z-3)^{3}},|z|>3$, show that $u_{1}=2, u_{2}=21, u_{3}=139$.

$$
(5 \times 12=60 \text { marks })
$$

